Enhanced Dynamic Page Renderer: CoT-Integrated Architecture
Executive Summaryâ
Building on the Dynamic Page Renderer foundation, this enhanced specification integrates Chain-of-Thought reasoning, progressive disclosure, and intelligent interaction patterns to create a truly adaptive UI system.
1. Extended JSON Schema for CoT Integrationâ
Enhanced Component Schemaâ
{
"pageType": "s_and_op_dashboard",
"metadata": {
"generatedAt": "2025-09-15T10:30:00Z",
"userContext": {
"role": "supply_chain_director",
"experience_level": "expert",
"detail_preference": "medium"
},
"aiDisclosure": {
"aiGenerated": true,
"riskLevel": "medium",
"complianceFlags": ["EU_AI_ACT"]
}
},
"layout": {
"type": "adaptive_grid",
"columns": 2,
"gap": 4,
"items": [
{
"id": "critical_insight_001",
"gridSpan": 2,
"component": {
"type": "CriticalInsightCard",
"intelligenceLevel": "tier2",
"props": {
"insight": {
"summary": "Frankfurt inventory 23% above optimal",
"impact": "$2.3M working capital impact",
"confidence": 0.87,
"urgency": "high"
},
"reasoning": {
"available": true,
"summarySteps": [
"Current inventory: 12,450 units (8.2 weeks coverage)",
"Target coverage: 4.5 weeks based on seasonal patterns",
"Excess carrying cost: $287K/month"
],
"hasFullCoT": true,
"cotEndpoint": "/api/reasoning/critical_insight_001/full"
},
"actions": [
{
"type": "primary",
"text": "Review Inventory Strategy",
"action": {
"type": "NAVIGATE_WITH_CONTEXT",
"target": "/workbench/inventory/frankfurt",
"payload": {"insight_id": "critical_insight_001"}
}
},
{
"type": "secondary",
"text": "Show Analysis",
"action": {
"type": "EXPAND_REASONING",
"target": "critical_insight_001"
}
}
]
}
}
}
]
},
"interactions": {
"eventHandlers": {
"EXPAND_REASONING": "handleReasoningExpansion",
"REQUEST_FULL_COT": "handleFullCoTRequest"
}
}
}
2. Enhanced Component Architectureâ
Progressive Disclosure Componentsâ
// CriticalInsightCard.jsx
import React, { useState } from 'react';
import { ReasoningPanel } from './ReasoningPanel';
import { useCoTAnalysis } from '../hooks/useCoTAnalysis';
const CriticalInsightCard = ({ insight, reasoning, actions, onUserInteraction }) => {
const [showReasoning, setShowReasoning] = useState(false);
const { cotData, loading, requestFullCoT } = useCoTAnalysis(insight.id);
const handleReasoningToggle = () => {
setShowReasoning(!showReasoning);
onUserInteraction('reasoning_toggled', {
insightId: insight.id,
expanded: !showReasoning
});
};
const handleFullCoTRequest = async () => {
await requestFullCoT();
onUserInteraction('full_cot_requested', { insightId: insight.id });
};
return (
<div className="insight-card">
{/* EU AI Act Disclosure Badge */}
<AIDisclosureBadge show={insight.aiGenerated} riskLevel={insight.riskLevel} />
{/* Main Insight Display */}
<div className="insight-content">
<h3>{insight.summary}</h3>
<div className="impact-metrics">
<span className="financial-impact">{insight.impact}</span>
<ConfidenceIndicator value={insight.confidence} />
</div>
</div>
{/* Progressive Disclosure Controls */}
<div className="insight-actions">
{actions.map((action, idx) => (
<ActionButton key={idx} action={action} onInteraction={onUserInteraction} />
))}
{reasoning.available && (
<button onClick={handleReasoningToggle} className="reasoning-toggle">
{showReasoning ? 'Hide Analysis' : 'Show Analysis'}
</button>
)}
</div>
{/* Reasoning Panel */}
{showReasoning && (
<ReasoningPanel
steps={reasoning.summarySteps}
onRequestFullCoT={handleFullCoTRequest}
fullCoTAvailable={reasoning.hasFullCoT}
cotData={cotData}
loading={loading}
/>
)}
</div>
);
};
Reasoning Panel Componentâ
// ReasoningPanel.jsx (Enhanced for Feedback)
import React from 'react';
import { CoTStep } from './CoTStep';
import { InsightFeedbackService } from '../services/InsightFeedbackService';
const ReasoningPanel = ({ insightId, steps, onRequestFullCoT, fullTAvailable, cotData, loading }) => {
const handleSuggestChange = () => {
// This would open a modal for feedback submission
InsightFeedbackService.promptForEdit(insightId);
};
return (
<div className="reasoning-panel">
<div className="reasoning-header">
<h4>Analysis Steps</h4>
<div className="reasoning-controls">
{fullTAvailable && (
<button
onClick={onRequestFullCoT}
className="full-cot-button"
disabled={loading}
>
{loading ? 'Loading Detailed Analysis...' : 'Show Full Reasoning'}
</button>
)}
<button onClick={handleSuggestChange} className="feedback-button">
Suggest a Change
</button>
</div>
</div>
{/* Summary Steps */}
<div className="reasoning-steps">
{steps.map((step, idx) => (
<div key={idx} className="reasoning-step-summary">
<span className="step-number">{idx + 1}</span>
<span className="step-content">{step}</span>
</div>
))}
</div>
{/* Full CoT Display */}
{cotData && (
<div className="full-cot-container">
<h5>Detailed Chain of Thought</h5>
{cotData.steps.map((step, idx) => (
<CoTStep key={idx} step={step} />
))}
<AuditTrail data={cotData.auditTrail} />
</div>
)}
</div>
);
};
3. Enhanced Dynamic Page Architectureâ
Context-Aware Page Containerâ
The DynamicPage component will be the root for the user feedback experience. It will host a floating action button to allow users to propose new insights at any time.
// DynamicPage.jsx (Enhanced)
import React, { useState, useCallback } from 'react';
import { PageRenderer } from './PageRenderer';
import { UserInteractionTracker } from '../services/UserInteractionTracker';
import { InsightFeedbackService } from '../services/InsightFeedbackService';
import { usePageData } from '../hooks/usePageData';
const DynamicPage = ({ endpoint, userContext }) => {
const { pageData, loading, error, refetch } = usePageData(endpoint);
const [interactionState, setInteractionState] = useState({});
const handleUserInteraction = useCallback(async (eventType, payload) => {
// Track interaction for learning
await UserInteractionTracker.track({
eventType,
payload,
userContext,
pageContext: pageData?.metadata,
timestamp: new Date().toISOString()
});
// Update local state
setInteractionState(prev => ({
...prev,
[payload.insightId]: {
...prev[payload.insightId],
[eventType]: true
}
}));
// Handle specific interaction types
switch (eventType) {
case 'reasoning_toggled':
// Analytics: Track reasoning engagement
break;
case 'full_cot_requested':
// Analytics: Track deep engagement with AI reasoning
break;
case 'action_taken':
// Analytics: Track business action completion
break;
}
}, [pageData, userContext]);
const handleProposeNewInsight = () => {
// Opens a modal to submit a new insight
InsightFeedbackService.promptForNew(pageData?.metadata);
};
if (loading) return <PageLoadingState />;
if (error) return <PageErrorState error={error} onRetry={refetch} />;
return (
<div className="dynamic-page">
{/* EU AI Act Compliance Header */}
<AIComplianceHeader disclosure={pageData.metadata.aiDisclosure} />
{/* Page Content */}
<PageRenderer
layout={pageData.layout}
interactions={pageData.interactions}
onUserInteraction={handleUserInteraction}
interactionState={interactionState}
/>
{/* Floating Action Button for New Insights */}
<button onClick={handleProposeNewInsight} className="fab-add-insight">
+
</button>
</div>
);
};
Streaming-Enabled Page Rendererâ
// PageRenderer.jsx (Enhanced with Streaming)
import React, { useEffect, useState } from 'react';
import { componentMap } from './ComponentRegistry';
import { useStreamingUpdates } from '../hooks/useStreamingUpdates';
const PageRenderer = ({ layout, interactions, onUserInteraction, interactionState }) => {
const [streamingData, setStreamingData] = useState({});
// Set up streaming connections for real-time updates
useStreamingUpdates({
pageId: layout.pageId,
onUpdate: (componentId, updatedProps) => {
setStreamingData(prev => ({
...prev,
[componentId]: updatedProps
}));
}
});
const renderComponent = (item, index) => {
const Component = componentMap[item.component.type];
if (!Component) {
return (
<div key={index} className="component-error">
<h4>Component Error</h4>
<p>Component '{item.component.type}' not found.</p>
</div>
);
}
// Merge static props with streaming updates
const mergedProps = {
...item.component.props,
...streamingData[item.id],
onUserInteraction,
interactionState: interactionState[item.id] || {}
};
const gridItemStyles = {
gridColumn: `span ${item.gridSpan}`,
opacity: streamingData[item.id]?.loading ? 0.7 : 1,
transition: 'opacity 0.3s ease'
};
return (
<div key={item.id || index} style={gridItemStyles}>
<Component {...mergedProps} />
</div>
);
};
const gridStyles = {
display: 'grid',
gridTemplateColumns: `repeat(${layout.columns}, 1fr)`,
gap: `${layout.gap * 4}px`,
transition: 'all 0.3s ease'
};
return (
<div style={gridStyles} className="page-renderer">
{layout.items.map(renderComponent)}
</div>
);
};
4. CoT Integration Hooksâ
Chain of Thought Analysis Hookâ
// hooks/useCoTAnalysis.js
import { useState } from 'react';
import { CoTService } from '../services/CoTService';
export const useCoTAnalysis = (insightId) => {
const [cotData, setCotData] = useState(null);
const [loading, setLoading] = useState(false);
const [error, setError] = useState(null);
const requestFullCoT = async () => {
setLoading(true);
setError(null);
try {
// Route to appropriate tier based on complexity
const response = await CoTService.getFullReasoning(insightId);
setCotData(response);
// Track the CoT request for learning
CoTService.trackCoTUsage(insightId, 'full_reasoning_requested');
} catch (err) {
setError(err);
} finally {
setLoading(false);
}
};
return {
cotData,
loading,
error,
requestFullCoT
};
};
Streaming Updates Hookâ
// hooks/useStreamingUpdates.js
import { useEffect, useRef } from 'react';
export const useStreamingUpdates = ({ pageId, onUpdate }) => {
const eventSourceRef = useRef(null);
useEffect(() => {
if (!pageId) return;
// Establish SSE connection for real-time updates
eventSourceRef.current = new EventSource(`/api/stream/${pageId}`);
eventSourceRef.current.onmessage = (event) => {
const update = JSON.parse(event.data);
switch (update.type) {
case 'COMPONENT_UPDATE':
onUpdate(update.componentId, update.props);
break;
case 'SCENARIO_RESULT':
onUpdate(update.componentId, {
scenarioResults: update.results,
loading: false
});
break;
case 'COT_STREAMING':
onUpdate(update.componentId, {
cotSteps: update.steps,
cotComplete: update.complete
});
break;
}
};
return () => {
if (eventSourceRef.current) {
eventSourceRef.current.close();
}
};
}, [pageId, onUpdate]);
};
5. Enhanced Component Registryâ
Versioned Component Systemâ
// ComponentRegistry.js (Enhanced)
import {
CriticalInsightCard,
CriticalInsightCard_v2,
PerformanceSummaryWidget,
PerformanceSummaryWidget_v1_1,
ScenarioAnalysisWidget,
CoTReasoningWidget,
ComplianceDisclosureWidget
} from './widgets';
export const componentMap = {
// Current versions
'CriticalInsightCard': CriticalInsightCard_v2,
'PerformanceSummaryWidget': PerformanceSummaryWidget_v1_1,
'ScenarioAnalysisWidget': ScenarioAnalysisWidget,
'CoTReasoningWidget': CoTReasoningWidget,
'ComplianceDisclosureWidget': ComplianceDisclosureWidget,
// Legacy versions for backward compatibility
'CriticalInsightCard_v1': CriticalInsightCard,
'PerformanceSummaryWidget_v1': PerformanceSummaryWidget,
};
export const getComponent = (type, version = 'latest') => {
const componentKey = version === 'latest' ? type : `${type}_v${version}`;
return componentMap[componentKey] || componentMap[type];
};
6. EU AI Act Compliance Componentsâ
AI Disclosure Badgeâ
// components/AIDisclosureBadge.jsx
const AIDisclosureBadge = ({ show, riskLevel, complianceFlags }) => {
if (!show) return null;
const getRiskColor = (level) => {
switch (level) {
case 'high': return 'bg-red-100 text-red-800';
case 'medium': return 'bg-yellow-100 text-yellow-800';
default: return 'bg-blue-100 text-blue-800';
}
};
return (
<div className={`ai-disclosure-badge ${getRiskColor(riskLevel)}`}>
<span className="ai-icon">đ¤</span>
<span>AI-Generated Content</span>
<button className="disclosure-info" title="Learn more about AI usage">
âšī¸
</button>
</div>
);
};
Compliance Headerâ
// components/AIComplianceHeader.jsx
const AIComplianceHeader = ({ disclosure }) => {
if (!disclosure?.aiGenerated) return null;
return (
<div className="compliance-header">
<div className="compliance-notice">
This page contains AI-generated insights and recommendations.
<a href="/ai-disclosure" className="compliance-link">
View AI system details
</a>
</div>
</div>
);
};
7. Learning and Analytics Integrationâ
User Interaction Tracking Serviceâ
// services/UserInteractionTracker.js
class UserInteractionTracker {
static async track(interaction) {
// Send to analytics service
await fetch('/api/analytics/interaction', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
...interaction,
sessionId: this.getSessionId(),
timestamp: new Date().toISOString()
})
});
// Update user preferences learning
this.updateUserLearningProfile(interaction);
}
static updateUserLearningProfile(interaction) {
// Learn user preferences for future page generation
const preferences = {
detailLevel: this.inferDetailPreference(interaction),
reasoningEngagement: this.trackReasoningUsage(interaction),
actionPatterns: this.trackActionPatterns(interaction)
};
localStorage.setItem('userPreferences', JSON.stringify(preferences));
}
}
8. Automated Insight Validation Engineâ
To empower users to collaborate with the AI, the system includes a closed-loop, automated feedback engine. This allows users to suggest edits to existing insights or propose new ones, which the system then validates and integrates autonomously.
8.1. User Experienceâ
- Suggesting Edits: A "Suggest a Change" button in the
ReasoningPanelallows users to submit corrections or rephrasing for an existing insight. - Proposing New Insights: A floating action button on the
DynamicPageallows users to submit a completely new insight or decision based on their own observations.
8.2. Backend: The Multi-Step Validation Workflowâ
When a user submits feedback via the POST /api/insights/feedback endpoint, the Insight Validation Service triggers a sophisticated, multi-step cognitive loop.
Step 1: Intent Parsing & Entity Extraction The engine uses an LLM to parse the user's raw text to understand their intent (e.g., 'escalate_urgency', 'correct_data') and extract key entities and new information.
Step 2: Automated Fact-Checking & Context Retrieval (RAG) The engine uses the extracted entities to query the RAG microservice. The RAG service searches all connected data sources (PostgreSQL, internal documents, external news APIs) to find evidence that supports or refutes the user's claim.
Step 3: Impact Analysis & Re-Reasoning The engine performs a second, complex LLM call, providing the original insight, the user's suggestion, the retrieved evidence, and the company's strategic objectives. It instructs the LLM to generate a revised insight and, crucially, to analyze its impact on strategic goals.
Step 4: Automated Action & UI Update Based on the LLM's final recommendation, the engine takes one of three actions:
APPLY_CHANGE: If the change is valid and has a positive or neutral impact, the insight is updated in the database and pushed to the user's UI in real-time.FLAG_NEGATIVE_IMPACT: If the change is valid but has a negative impact on key objectives, the change is not applied. Instead, a new "warning" insight is generated and displayed, explaining the negative trade-off. This provides critical safety and transparency.REJECT_INVALID: If the user's claim could not be verified, a polite notification is displayed to the user, and the original insight is retained.
This automated workflow transforms user feedback from a simple comment into a trigger for a full, AI-driven validation and impact analysis cycle.
9. Strategic Considerations & Refinementsâ
This FSD is a fantastic foundation. As you move toward implementation, here are a few strategic refinements to consider that build upon this base.
9.1. Integrating Interactivity and State Managementâ
The current specification excels at rendering a page layout. The next step is to define how these dynamically rendered components become interactive.
-
How do widgets communicate? For example, clicking a metric in the
PerformanceSummaryWidgetmight need to update or filter another widget on the page. -
Recommendation: Consider extending the JSON schema to support an event and action system. The backend could define actions in the props, like:
"primaryAction": {
"text": "Refresh Performance",
"action": {
"type": "BROADCAST_EVENT",
"payload": { "eventName": "REFRESH_PERFORMANCE_DATA" }
}
}The
DynamicPagecomponent could then manage a shared state or event bus, listening for these events and triggering the appropriate data refetches or UI updates.
9.2. Incorporating the Streaming Data Flowâ
This rendering engine is the perfect place to receive the streaming data we discussed for the What-If Workbench.
-
How it works: The
DynamicPage.jsxcomponent can establish the streaming connection. While the overall page structure is defined by the initial JSON, the props for individual widgets can be updated in real-time by incoming data. -
Example: The
PageRenderercould pass a stream of data down to thePerformanceSummaryWidget. As the Monte Carlo simulation runs, new data packets would be sent, causing the widget to re-render with the latest confidence levels without reloading the entire page.
9.3. Versioning the Schema and Componentsâ
As your application evolves, you will inevitably want to change the props or behavior of a widget.
-
The Challenge: The backend might generate JSON for a
CriticalInsightCard_v2while an older frontend only knowsCriticalInsightCard. -
Recommendation: Introduce a
versionfield into your JSON schema for each component."component": {
"type": "CriticalInsightCard",
"version": "1.1",
"props": { ... }
}The
ComponentRegistry.jscan then be structured to handle multiple versions, ensuring that new backend features don't break older clients.
10. Implementation Roadmapâ
Phase 1: Basic Learning (The MVP Foundation)â
Objective: Get the core feedback loop working. The system should be able to track basic interactions, build a simple user profile, and make elementary changes to the page layout.
Epic 1: Backend - User Profile & Interaction Trackingâ
- Database: Design and implement the database schema for the
UserProfilemodel. Include initial fields forbehavioral_patternsandlearning_metadata. - API Endpoint: Create the backend API endpoint (e.g.,
POST /api/analytics/interaction) to receive and validate interaction events from the frontend. - Interaction Engine: Implement the initial
InteractionLearningEngine. Focus on theprocess_interactionand_update_behavioral_patternsmethods. The learning can start with simple weighted averages. - Profile Service: Build a service to create, retrieve, and update user profiles.
Epic 2: Backend - Simple Adaptive Generationâ
- Page Generator: Implement the initial
AdaptivePageGenerator. It should be able to retrieve a user profile and make a simple decision. - Layout Strategy: Implement two basic layout strategies from
_determine_layout_strategy, such as'executive_summary'and'action_priority'. - API Integration: Modify the existing page generation API to use the
AdaptivePageGeneratorto produce the final page JSON.
Epic 3: Frontend - Instrument User Interactionsâ
- Event Tracking: Ensure the
UserInteractionTrackerservice (from your previous FSD) is correctly sending events forreasoning_expanded,insight_dismissed, andaction_taken. - Payload Enrichment: Add necessary metadata to the event payloads (e.g.,
complexity_score,time_to_action).
Phase 2: Advanced Patterns (Building Intelligence)â
Objective: Move beyond simple behavioral traits to understand context and content. The system should start making more nuanced and relevant adaptations.
Epic 1: Contextual Pattern Recognitionâ
- Data Models: Create database schemas to store
contextual_patternsandcontent_effectivenessscores. - Frontend Context: Enhance the frontend to send contextual information with each interaction (e.g., time of day, business period).
- Learning Engine: Implement the
_update_contextual_patternsand_update_content_effectivenessmethods in the learning engine. - Prediction Logic: Implement the predictive logic in the
AdaptivePageGenerator, starting with_predict_detail_preferencewhich uses the new contextual data.
Epic 2: Content Relevance & Personalizationâ
- Relevance Scoring: Implement the
_calculate_relevance_scoremethod to rank insights based on user profile, context, and historical effectiveness. - Insight Processing: Build the
_generate_contextual_insightslogic that uses relevance scores to select and prioritize the most important content for the user.
Epic 3: Cross-User Learningâ
- Pattern Analyzer: Implement the
CrossUserPatternAnalyzerand thefind_role_based_patternsmethod. - Scheduled Job: Create a scheduled background job that runs the analyzer periodically (e.g., weekly) to update aggregated role-based patterns.
- New User Logic: Update the
AdaptivePageGeneratorto use these role-based patterns as the default profile for new users, giving them a personalized experience from their first session.
Phase 3: Predictive Intelligence (Becoming Proactive)â
Objective: Use outcome data to learn what actually works and begin proactively generating pages before the user even asks for them.
Epic 1: Outcome-Based Feedback Loopâ
- Outcome Tracking: Design and implement a system for capturing business outcomes of actions taken (this is a key product design task). Create an API endpoint (e.g.,
POST /api/outcomes). - Continuous Learning System: Implement the
ContinuousLearningSystemand theprocess_outcome_feedbackmethod. - Effectiveness Calculation: Implement the
_calculate_page_effectivenesslogic to score page sessions based on engagement, success rates, and business impact.
Epic 2: Predictive Page Pre-Generationâ
- Background Worker: Set up a background worker infrastructure.
- Pre-generation Trigger: Create logic to trigger page pre-generation based on signals like an upcoming S&OP meeting in the user's calendar or typical login times.
- Caching Layer: Implement a caching layer where pre-generated pages are stored.
- API Update: Modify the page-load API to check the cache for a pre-generated page before falling back to on-demand generation.
Phase 4: Autonomous Optimization (The Self-Driving System)â
Objective: Create a fully autonomous system that not only adapts to users but actively experiments and improves its own core intelligence over time.
Epic 1: Autonomous System Improvementâ
- Periodic Optimization: Implement the
run_periodic_optimizationmethod in theContinuousLearningSystem. - Self-Improving Templates: This job should be able to analyze global patterns and update the default page templates, raising the baseline intelligence for all users.
- Stale Profile Detection: Implement logic to identify and potentially reset or lower the confidence score for user profiles that haven't been updated in a long time.
Epic 2: Automated A/B Testing of Layoutsâ
- Experimentation Logic: Enhance the
AdaptivePageGeneratorto, for a small fraction of users, generate a "challenger" layout alongside the "champion" layout. - Performance Comparison: Enhance the
ContinuousLearningSystemto statistically compare thepage_effectivenessmetrics between champion and challenger layouts. - Automated Promotion: Create a mechanism to automatically promote a challenger to the new champion if it proves to be significantly more effective over time.
11. Key Advantages of This Architectureâ
- Seamless CoT Integration: Users get insights immediately, with reasoning available on-demand
- EU AI Act Ready: Built-in compliance tracking and disclosure
- Self-Learning: Every interaction improves future page generation
- Collaborative Intelligence: Users can contribute to and refine AI insights through a safe, automated validation loop.
- Cost Optimized: Smart routing ensures expensive AI only when needed
- Streaming Ready: Real-time updates for scenario analysis and What-If workflows
- Backward Compatible: Versioned components ensure smooth updates
This enhanced architecture transforms your Dynamic Page Renderer from a static schema interpreter into an intelligent, adaptive interface that learns and evolves with user needs while maintaining full compliance and transparency.