Skip to main content

MILESTONE 5: Role-Based Adaptive Intelligence - Strategic Overview

Status: Just Launched M5.1 Total Phases: 5 (Foundation → Intelligence → Personalization) Timeline: 8-10 weeks to production-quality Impact: This is ChainAlign's "secret sauce"


What Makes This Your Secret Sauce

Most BI/planning tools show the same dashboard to everyone. ChainAlign shows different pages to different people because it understands:

  1. WHO is viewing (S&OP Director vs. CFO vs. Demand Planner)
  2. WHEN they're viewing (Pre-read vs. workbench vs. dashboard)
  3. WHAT they care about (Different metrics per role)
  4. HOW they decide (Speed, detail level, external data usage)
  5. WHY it matters (Business impact quantified)

And it learns continuously - the persona templates improve as more users interact.


The Complete Vision

┌─────────────────────────────────────────────────────────────────┐
│ CHAINALIGN INTELLIGENCE SYSTEM │
├─────────────────────────────────────────────────────────────────┤
│ │
│ USER REGISTRATION │
│ ├─ Select Role (12 options) │
│ ├─ Initial Persona Assignment (from default template) │
│ └─ First Page Load (using persona defaults) │
│ ↓ │
│ PERSONA-DRIVEN PAGE GENERATION │
│ ├─ Anomaly Detection (2+ std dev) │
│ ├─ Impact Quantification ($, %, timeline) │
│ ├─ Headline Generation (data-driven, role-aware) │
│ ├─ Hero Section Selection (Executive-focused) │
│ ├─ Detail Section Selection (persona detail level) │
│ ├─ Action Recommendations (learned from similar users) │
│ └─ Render in Persona Template │
│ ↓ │
│ INTERACTION TRACKING & LEARNING │
│ ├─ Track: Headline views, chart interactions, actions taken │
│ ├─ Individual Learning: Update this user's profile │
│ ├─ Aggregate Learning: Weekly persona template evolution │
│ └─ Persona Matching: Adjust persona if user behavior diverges │
│ ↓ │
│ CONTINUOUS IMPROVEMENT │
│ ├─ User Profile → More personalized pages │
│ ├─ Persona Template → Better defaults for new users │
│ └─ Feedback Loop → System gets smarter weekly │
│ │
└─────────────────────────────────────────────────────────────────┘

Current State vs. Future State

CURRENT (Post MILESTONE 4)

User Logs In

Page Renderer
├─ Generic layout
├─ All users see similar structure
└─ Some component customization

Generic Dashboard

FUTURE (After MILESTONE 5)

User Logs In

Get User Persona Profile
├─ Assigned role (S&OP Director, CFO, etc.)
├─ Learned preferences (detail level, metrics, external data)
└─ Historical actions (patterns of decision-making)

Generate Adaptive Page
├─ Detect anomalies relevant to this role
├─ Quantify business impact for this role
├─ Generate headline (data-driven, role-specific)
├─ Create hero section (chart type based on role)
├─ Select detail elements (level matches persona)
├─ Recommend actions (from similar users' patterns)
└─ Use persona template (layout, colors, language)

McKinsey-Style Page
├─ Headline (data-backed statement)
├─ Hero (chart + key metric + context)
├─ Details (only what this role cares about)
├─ Actions (with impact estimates)
└─ Audit trail (external factors, decisions)

Track Interactions
└─ Every view, click, action feeds learning loop

The 12 Personas at a Glance

S&OP Flow (7 Personas)

#RolePrimary DecisionPage FocusHero Chart
1S&OP ExecutiveTrade-offs: Demand vs. Supply vs. ProfitStrategic alignment & approval3-way waterfall
2Supply Chain DirProduction capacity, inventory, suppliersSupply-demand gapGap + coverage
3Sales VPDemand forecast accuracy & biasForecast vs. actualForecast variance trend
4Finance VP (FP&A)Plan profitability & AOP gapFinancial impactP&L waterfall
5Demand PlannerStatistical forecasting & modelingModel accuracy & anomaliesTime series + residuals
6Supply PlannerDetailed capacity & schedulesCapacity utilizationGantt + inventory
7Marketing VPPromotions & demand shapingPromo ROI & effectivenessPromotion impact

Financial Flow (5 Personas)

#RolePrimary DecisionPage FocusHero Chart
8CFOCapital allocation, strategic investmentsEnterprise profitability & ROICP&L + ROIC by BU
9FP&A VPScenario modeling & budgetingVariance analysis & driversVariance waterfall
10ControllerData integrity & complianceData quality & controlsData quality scorecard
11TreasurerCash flow & working capitalLiquidity managementCash bridge + WC by component
12Head of IRInvestor narrative & KPIsEarnings story & guidanceKPI vs. guidance waterfall

McKinsey-Style Page Structure

Every page follows this structure (adapted per persona):

┌──────────────────────────────────────────────────────────────┐
│ 1. HEADLINE (Data-Driven, Role-Specific) │
│ ✓ Metric + Direction + Impact │
│ Example: "Frankfurt inventory 23% above optimal, │
│ costing $2.3M in working capital" │
└──────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────┐
│ 2. HERO SECTION (Chart + Key Metric) │
│ ┌────────────────────┐ ┌──────────────────────┐ │
│ │ [Primary Chart] │ │ Key Metrics: │ │
│ │ (Waterfall, Trend, │ │ • $2.3M impact │ │
│ │ Gap, etc.) │ │ • 8.2 weeks (vs 4.5) │ │
│ │ │ │ • Root: Tariff │ │
│ │ │ │ • Timeline: 45 days │ │
│ └────────────────────┘ └──────────────────────┘ │
│ │
│ Context: "Spike driven by tariff-induced hoarding 3 wks ago"│
└──────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────┐
│ 3. ROOT CAUSE & CONTEXT │
│ • External Driver: Policy event (tariff 20%→25%) │
│ • Secondary Driver: Weather spike drove demand (Feb 3) │
│ • Timeline: Tariff announced Jan 15, effective Mar 15 │
│ • Supplier Impact: ABC Corp routing from China→Vietnam │
│ • Lead Time: 45 days to complete rerouting │
└──────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────┐
│ 4. DETAIL SECTIONS (Persona Detail Level) │
│ • Executive: 2-3 KPIs per section │
│ • Medium: Drill by product/region/supplier │
│ • High: Granular (by machine, SKU, week, driver) │
└──────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────┐
│ 5. ACTIONS & RECOMMENDATIONS │
│ [Primary] Reduce inventory by 7,250 units in 4 weeks │
│ [Secondary] Accelerate demand planning for Q2 │
│ [Tertiary] Adjust supplier routing per FTA settlement │
│ │
│ Impact: $2.3M working capital freed, inventory normalized │
│ Timeline: Can execute in 4 weeks (before policy effective) │
└──────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────┐
│ 6. AUDIT TRAIL (Transparency) │
│ Detected: 2025-10-20 (anomaly detection) │
│ Policy Event: US tariff 20%→25% (Jan 15 announced) │
│ External Data: Temperature spike Feb 1-3 (demand driver) │
│ Recommended Action: 2025-10-22 │
│ Owner: Supply Chain Director │
│ Previous Similar Case: Aug 2024 (action effective in 6d) │
└──────────────────────────────────────────────────────────────┘

How Pages Differ by Persona

Same Data, Different Pages

Data: Frankfurt inventory spike (+7,250 units, $2.3M cost)

Supply Chain Director sees:

HEADLINE: "Frankfurt warehouse overstock 23%, $2.3M at risk"
HERO: Inventory waterfall + coverage metric (8.2 vs 4.5 weeks)
DETAIL: Supplier routing impact, lead time to normalize
ACTIONS: Reduce inventory, adjust production schedule

S&OP Executive sees:

HEADLINE: "Inventory spike creates $2.3M working capital headwind,
offsetting operational gain"
HERO: 3-way waterfall (Demand | Supply | Financial)
DETAIL: Trade-off analysis (inventory vs. service level vs. cash)
ACTIONS: Approve inventory reduction, authorize financing if needed

CFO sees:

HEADLINE: "Current plan delivers $148M EBIT vs $150M target,
$2M gap driven by working capital drag"
HERO: P&L waterfall with working capital impact
DETAIL: Cash flow impact, balance sheet implications
ACTIONS: Approve liquidity facility, adjust forecast

Demand Planner sees:

HEADLINE: "Forecast bias +3% in Frankfurt, demand exceeded plan.
Excess inventory suggests bias, not supply risk."
HERO: Forecast vs actual trend line with residuals
DETAIL: Statistical analysis, decomposition by driver
ACTIONS: Adjust model, review bias methodology

Implementation Phases

Phase 1: Persona System Foundation (2-3 weeks)

✓ Build personas table (12 roles) ✓ Build user_profiles table (learning data) ✓ Implement role selection in registration ✓ Create default persona templates

Deliverable: Users assign to persona at registration

Phase 2: Interaction Tracking & Learning (2-3 weeks)

✓ Implement event tracking (headline views, chart interactions, actions) ✓ Build individual learning (update user profile in real-time) ✓ Build persona evolution (weekly aggregation of all users) ✓ Create persona matching re-evaluation

Deliverable: System learns from interactions

Phase 3: Headline Generation & Hero Section (2-3 weeks)

✓ Build AnomalyDetector service (2+ std dev) ✓ Build ImpactQuantifier service ($, %, timeline) ✓ Build HeadlineGenerator (LLM + rules) ✓ Build HeroSection component (Executive-focused)

Deliverable: Data-driven headlines + visual hierarchy

Phase 4: Persona-Driven Page Generation (2-3 weeks)

✓ Build AdaptivePageGenerator service ✓ Build DetailSectionSelector (persona-aware) ✓ Build ActionRecommender (learned from similar users) ✓ Integrate into existing PageRenderer

Deliverable: Pages adapt to persona

Phase 5: External Data Integration (1-2 weeks)

✓ Link M3 weather/policy/econ data to page generation ✓ Add external data enrichment to headlines ✓ Add context badges (weather, policy, economic impact)

Deliverable: Pages explain "why" with external context


Why This Is Your Secret Sauce

Competitors Do This

  • ✗ Generic dashboards (same for everyone)
  • ✗ Static reports (pre-built templates)
  • ✗ Data access (tables and charts)
  • ✗ Notifications (alerts when thresholds hit)

ChainAlign Does This

  • Persona-driven pages (different for each role)
  • AI-generated headlines (data tells the story)
  • Executive-focused structure (headline → hero → details)
  • Intelligent context (weather, policy, economic factors)
  • Learning & adaptation (system gets smarter each week)
  • Quantified impact (always know the "why" and "$")
  • Transparent audit trail (see how we got here)

Result: Pages that feel built just for you, making your job easier.


Demo Opportunity

When you demo this, you'll show:

  1. Same data, different personas

    • Supply Chain Director pre-read (focus: supply-demand gap)
    • CFO dashboard (focus: financial impact)
    • Demand Planner workbench (focus: model accuracy)
  2. Data-driven headlines

    • "Frankfurt inventory 23% above optimal, $2.3M at risk"
    • Not: "Inventory update for Frankfurt"
  3. Executive-focused structure

    • Headline that leads to action
    • Hero section that visualizes the insight
    • Details only relevant to the persona
  4. External intelligence

    • Explains inventory spike via tariff policy
    • Shows weather impact on demand
    • Links policy routing decisions to timeline
  5. Learning & evolution

    • "This persona learned that Supply Chain Directors spend 60% of time on lead time issues"
    • "Template updated based on 12 users in this role"

Success = This Conversation

Sales Demo:

  • Prospect: "So each role sees a different page?"
  • You: "Yes, optimized for how you make decisions"
  • Prospect: "And it learns what I care about?"
  • You: "Exactly. The more you use it, the smarter it gets"
  • Prospect: "And the external context (weather, policy)?"
  • You: "Baked into every page, explaining why the numbers changed"

That's the sale.


Next: M5.2 - Headline Generation Engine

Ready to start Phase 1, or want to review any persona definitions first?

I recommend:

  1. Review the 12 personas (especially the ones for your demo)
  2. Confirm the page structure matches your vision
  3. Then we'll launch Phase 1 (Persona System Foundation)

What would you like to adjust or confirm?