Full S&OP Data Element Inventory
Version: 1.0 Date: September 9, 2025
Introduction
Purpose: To provide a comprehensive inventory of S&OP data elements. This document breaks down each element into its potential constituent data fields, with mappings to common ERP systems like SAP and Odoo where applicable. It serves as a master guide for the ChainAlign data model and AI training.
1. Demand Data & Forecasting
This category covers all aspects of understanding and predicting customer demand.
1.1. Bookings (Order Inflow)
The total volume of new customer orders received.
- Data Owner: Sales Operations
- Source System Example: SAP S/4HANA, Odoo Sales Module
- Update Frequency: Real-time or Daily
- Constituent Data:
order_id: Unique identifier for the order. (SAP: VBAK-VBELN, Odoo: sale.order-id)customer_id: Identifier for the customer. (SAP: KNA1-KUNNR, Odoo: res.partner-id)product_sku: The specific product being ordered. (SAP: VBAP-MATNR, Odoo: product.product-id)order_date: Date the order was placed. (SAP: VBAK-AUDAT, Odoo: sale.order-date_order)requested_delivery_date: The date the customer wants the product. (SAP: VBAP-EDATU, Odoo: sale.order-commitment_date)order_quantity: Number of units ordered. (SAP: VBAP-KWMENG, Odoo: sale.order.line-product_uom_qty)unit_price: Price per unit at the time of order. (SAP: VBAP-NETPR, Odoo: sale.order.line-price_unit)order_status: e.g., ‘Confirmed’, ‘Pending’, ‘Cancelled’. (SAP: VBAK-STATU, Odoo: sale.order-state)
- Metadata:
source_table: SAP: VBAK, Odoo: sale_orderlast_updated: SAP: VBAK-AEDAT, Odoo: sale_order.write_datenotes: Order status reflects the latest state of the sales order in the system.
1.2. Shipments (Order Outflow)
The total volume of orders fulfilled and sent to customers.
- Data Owner: Logistics/Distribution Team
- Source System Example: SAP EWM, Odoo Inventory/Delivery
- Update Frequency: Real-time or Daily
- Constituent Data:
shipment_id: Unique identifier for the shipment. (SAP: LIKP-VBELN, Odoo: stock.picking-id)order_id: The corresponding sales order. (SAP: LIKP-VBELN → VBAK-VBELN, Odoo: stock.picking-sale_id)actual_ship_date: The date the product was actually shipped. (SAP: LIPS-LFDAT, Odoo: stock_picking.scheduled_date)shipped_quantity: Number of units shipped. (SAP: LIPS-LFIMG, Odoo: stock_move.product_uom_qty)carrier_id: The logistics provider used. (SAP: LIKP-VSBED / VTTK-VSART, Odoo: delivery_carrier.id)tracking_number: For tracing the shipment. (SAP: LIKP-TKNUM, Odoo: delivery_carrier.tracking_ref)
- Metadata:
source_table: SAP: LIKP, Odoo: delivery_carrierlast_updated: SAP: LIKP-AEDAT, Odoo: delivery_carrier.write_datenotes: Tracking number may be updated post-shipment.
1.3. Backlog
The buffer of open, unfulfilled customer orders.
- Data Owner: Customer Service / Order Management
- Source System Example: SAP SD, Odoo Sales
- Update Frequency: Daily
- Constituent Data:
backlog_id: Unique identifier. (SAP: Custom or generated key, Odoo: Custom ID)order_id: The open order. (SAP: VBAK-VBELN, Odoo: sale.order-id)product_sku: The product on backlog. (SAP: VBAP-MATNR, Odoo: sale.order.line-product_id)backlog_quantity: The quantity of units pending fulfillment. (SAP: Calculated from VBAK + VBAP + delivery schedules, Odoo: sale_order_line.product_uom_qty - stock_moves done)age_of_backlog_days: How long the order has been open. (SAP: Calculated from VBAK-AUDAT to current date, Odoo: sale_order.date_order to current date)reason_code: e.g., ‘Awaiting Production’, ‘Awaiting Components’. (SAP: Custom field or status codes, Odoo: Custom field on sale_order or stock_move)
- Metadata:
source_table: SAP: VBAK or custom, Odoo: sale_order or stock_movelast_updated: SAP: VBAK-AEDAT or custom, Odoo: sale_order.write_date or stock_move.write_datenotes: Used for backlog analysis; may require business-specific mapping.
1.4. Sales Forecasts
The core forward-looking view of expected demand.
- Data Owner: Demand Planning / FP&A
- Source System Example: SAP IBP, Odoo custom forecast
- Update Frequency: Weekly or Monthly
- Constituent Data:
forecast_id: Unique identifier for the forecast version. (SAP: SOPC-FORECAST_ID or similar, Odoo: product.forecast_id or custom)product_sku: The product being forecasted. (SAP: SOPC-MATNR, Odoo: product_product.id)region_id: The geographic area. (SAP: SOPC-REGION or similar, Odoo: Custom field or analytic account)time_period: e.g., ‘2025-10’ (monthly bucket). (SAP: SOPC-PLAN_DATE, Odoo: Custom date field)forecasted_units: The number of units projected to be sold. (SAP: SOPC-FORECAST_QTY, Odoo: product.forecast_units)forecasted_revenue: The projected revenue (forecasted_units * projected_price). (SAP: Calculated from SOPC forecast and MVKE-MATPR, Odoo: Calculated from product.forecast_units × product.list_price)currency_code: e.g., ‘USD’, ‘EUR’. (SAP: T001-WAERS or SOPC currency field, Odoo: res_currency.name)forecast_type: e.g., ‘Statistical’, ‘Sales Input’, ‘Consensus’. (SAP: SOPC-FORECAST_TYPE, Odoo: Custom field)
- Metadata:
source_table: SAP: SOPC, Odoo: custom forecast tablelast_updated: SAP: SOPC-AEDAT or custom, Odoo: custom fieldnotes: Indicates method or source of forecast.
1.5. Historical & Current Sales Data
Past and real-time sales figures used for analysis and forecasting.
- Data Owner: Sales Operations / Finance
- Source System Example: SAP SD Billing, Odoo Invoicing
- Update Frequency: Daily / Real-time
- Constituent Data:
transaction_id: Unique identifier for a past sale. (SAP: VBRK-VBELN or VBELN, Odoo: account_move.id or sale_order.id)product_sku: The product sold. (SAP: VBRP-MATNR, Odoo: sale_order_line.product_id)transaction_date: The date of the sale. (SAP: VBRK-FKDAT, Odoo: account_move.date or sale_order.date_order)units_sold: The quantity sold. (SAP: VBRP-FKIMG, Odoo: sale_order_line.product_uom_qty)net_revenue: The revenue from the sale. (SAP: VBRP-NETWR, Odoo: account_move_line.price_subtotal)
- Metadata:
source_table: SAP: VBRP, Odoo: account_move_linelast_updated: SAP: VBRP-AEDAT, Odoo: account_move_line.write_datenotes: Revenue may be subject to adjustments or credits.
1.6. Unconstrained Demand Plan
The consensus view of what customers would buy if no supply limitations existed.
- Data Owner: Demand Planning / S&OP Facilitator
- Source System Example: SAP IBP, Odoo custom plan
- Update Frequency: Monthly
- Constituent Data:
plan_version_id: Identifier for the locked plan. (SAP: SOPC-PLAN_VERSION, Odoo: Custom plan version ID)product_sku: The product. (SAP: SOPC-MATNR, Odoo: product_product.id)time_period: The planning period. (SAP: SOPC-PLAN_DATE, Odoo: Custom date field)unconstrained_units: The final agreed-upon demand number. (SAP: SOPC-UNCONSTRAINED_QTY, Odoo: Custom field)rationale_text: The documented assumptions behind the number. (SAP: Custom notes field, Odoo: Custom notes field)
- Metadata:
source_table: SAP: custom notes, Odoo: custom notes fieldlast_updated: SAP: custom timestamp, Odoo: custom fieldnotes: Free-text; may require standardization for reporting.
1.7. Market & Customer Insights
Data on market dynamics and customer preferences.
- Data Owner: Strategy / Market Insights
- Source System Example: Market Research Tools, SAP BW, Odoo custom, CRM
- Update Frequency: Quarterly or Monthly
- Constituent Data:
market_segment_id: The specific market (e.g., "High-End Watches, Europe"). (SAP: Custom segmentation field, Odoo: Custom analytic tag)time_period: The period of measurement. (SAP: Custom date field, Odoo: Custom date field)total_market_volume: The estimated total sales in the market. (SAP: External data or custom, Odoo: External data or custom)company_sales_volume: The company's sales in that market. (SAP: Sales data filtered by segment, Odoo: Sales filtered by analytic tag)market_share_percentage: The calculated share. (SAP: Calculated field, Odoo: Calculated field)customer_satisfaction_score: e.g., CSAT, NPS.social_sentiment_score: Positive/negative brand perception.
- Metadata:
source_table: SAP: calculation from external + internal data, Odoo: calculated fieldlast_updated: SAP/Odoo: calculation timestampnotes: Requires integration of external market data.
1.8. Demand Shaping Inputs
Data related to initiatives that actively influence demand.
- Data Owner: Marketing
- Source System Example: SAP CRM, Odoo Marketing
- Update Frequency: As needed / Quarterly
- Constituent Data:
promotion_id: Unique identifier. (SAP: ZPROMO-PROMO_ID or custom, Odoo: marketing_promotion.id)promotion_name: e.g., "Q4 Holiday Sale". (SAP: ZPROMO-PROMO_NAME, Odoo: marketing_promotion.name)start_date/end_date: Duration of the promotion. (SAP: ZPROMO-START_DATE / END_DATE, Odoo: marketing_promotion.start_date / end_date)product_skus_affected: Which products are included. (SAP: ZPROMO-MATNR list, Odoo: marketing_promotion.product_ids)expected_lift_percentage: The projected impact on sales. (SAP: ZPROMO-LIFT_PCT, Odoo: Custom field)pricing_data: Current and planned pricing for products.
- Metadata:
source_table: SAP: ZPROMO, Odoo: marketing_promotion or customlast_updated: SAP: ZPROMO-AEDAT, Odoo: marketing_promotion.write_datenotes: May be estimated; validate with marketing team.
1.9. Product Portfolio Data
Data related to the product lifecycle.
- Data Owner: Product Management / NPI Project Lead
- Source System Example: SAP PLM, Odoo Projects
- Update Frequency: As needed / Project-based
- Constituent Data:
npi_project_id: Identifier for the launch project. (SAP: ZNPI-PROJECT_ID, Odoo: project.project.id)new_product_sku: The new product. (SAP: ZNPI-MATNR, Odoo: product_product.id)launch_date: The target market release date. (SAP: ZNPI-LAUNCH_DATE, Odoo: project.project.start_date or custom)initial_ramp_up_volume: The planned initial production/sales volume. (SAP: ZNPI-RAMP_UP_VOL, Odoo: Custom field)eol_plans: Phase-out plans for discontinued products.product_mix: The range and hierarchy of products offered.
- Metadata:
source_table: SAP: ZNPI, Odoo: custom NPI plan tablelast_updated: SAP: ZNPI-AEDAT, Odoo: custom fieldnotes: Critical for NPI readiness tracking.
1.10. Segmentation & Context
Data used to segment and understand demand patterns.
- Data Owner: Commercial / IT
- Source System Example: ERP, CRM, BI Tool
- Update Frequency: Varies
- Constituent Data:
demand_streams: Segmentation by channel, region, or go-to-market strategy.demand_variability: Coefficient of variation for demand.context_aware_entities: Products, regions, dates identified from conversations.
2. Supply, Capacity & Resources
This category includes all data related to the capability to produce and deliver goods.
2.1. Production & Manufacturing
Data related to the output of goods.
- Data Owner: Production Planning / Manufacturing Operations
- Source System Example: SAP PPDS, Odoo Manufacturing, MES
- Update Frequency: Daily / Weekly
- Constituent Data:
plan_id: (SAP: PPDS-PLAN_ID, Odoo: mrp.production.id)product_sku: (SAP: PPDS-MATNR, Odoo: product_product.id)plant_id: (SAP: PPDS-WERKS, Odoo: stock_location.warehouse_id)time_period: (SAP: PPDS-PLAN_DATE, Odoo: mrp.production.date_planned_start)planned_production_units: (SAP: PPDS-PLAN_QTY, Odoo: mrp.production.product_qty)actual_units_produced: (SAP: AFRU-GMNG, Odoo: mrp.production.qty_produced)yield_rate: Percentage of good units produced. (SAP: Calculated or custom field, Odoo: Custom field)production_capacity: Maximum achievable output. (SAP: CRHD-KAP, Odoo: mrp.workcenter-capacity)upside_flex: Capacity to increase production beyond the plan. (SAP: Custom, Odoo: Custom)bottlenecks: Identified constraints in the production process. (SAP: Custom, Odoo: Custom)
- Metadata:
source_table: SAP: PPDS, AFKO, AFRU, CRHD; Odoo: mrp.production, mrp.workcenterlast_updated: Varies by source table.notes: Combines planning, execution, and capacity data.
2.2. Sourcing & Procurement
Data related to acquiring materials and components.
- Data Owner: Procurement / Supplier Quality
- Source System Example: SAP MM, Odoo Purchase
- Update Frequency: Varies
- Constituent Data:
supplier_id: (SAP: LFA1-LIFNR, Odoo: res_partner.id)component_sku: (SAP: MARA-MATNR, Odoo: product_product.id)planned_lead_time_days: (SAP: MRP2-BDTER or custom, Odoo: product_supplierinfo.delay)actual_lead_time_days: (SAP: Calculated from EKKO-BEDAT to MSEG-BUDAT, Odoo: Calculated field)otif_percentage: (SAP: Calculated field, Odoo: Calculated field)raw_material_availability: Stock levels of key inputs. (SAP: MARD-LABST, Odoo: stock.quant-quantity)unreliable_suppliers: List of suppliers with high variability. (SAP: Custom, Odoo: Custom)
- Metadata:
source_table: SAP: LFA1, EINE, EKKO, MSEG; Odoo: res.partner, product_supplierinfo, purchase_order, stock_pickinglast_updated: Varies by source table.notes: Combines planned lead times, actuals, and performance metrics.
2.3. Logistics & Distribution
Data related to storing and moving goods.
- Data Owner: Supply Chain (Logistics/Warehouse) / Maintenance
- Source System Example: SAP WM/EWM, Odoo Inventory, WMS, SAP PM, Odoo Maintenance
- Update Frequency: Daily / Weekly
- Constituent Data:
distribution_capacity: Warehouse throughput capacity.transportation_routes: Data on logistics optimization.maintenance_id: (SAP: PM-ORDERID, Odoo: maintenance.request.id)plant_id: (SAP: T001-WERKS, Odoo: stock_location.warehouse_id)asset_id: (SAP: EQUN-EQUNR, Odoo: maintenance.equipment.id)start_datetime: (SAP: PM-START_DATE, Odoo: maintenance.request.start_datetime)end_datetime: (SAP: PM-END_DATE, Odoo: maintenance.request.end_datetime)impact_on_capacity_percent: (SAP: Custom field, Odoo: Custom field)
- Metadata:
source_table: SAP: LIKP, VTTK, PM tables; Odoo: stock.picking, delivery.carrier, maintenance.requestlast_updated: Varies by source table.notes: Combines logistics and maintenance data.
2.4. Human Resources
Data related to the workforce.
- Data Owner: HR / Finance
- Source System Example: SAP HR/CO, Odoo Payroll, Workday
- Update Frequency: Monthly
- Constituent Data:
staffing_levels: Current headcount vs. plan.labor_availability: Availability of key skills.time_period: (SAP: HR module or CO data, Odoo: Custom date field)plant_id: (SAP: HR or CO data, Odoo: stock_location.warehouse_id)department_id: (SAP: HR module, Odoo: hr.department.id)standard_labor_cost: (SAP: HR or CO data, Odoo: Payroll or analytic account)overtime_labor_cost: (SAP: HR or CO data, Odoo: Payroll or analytic account)
- Metadata:
source_table: SAP: HR/CO tables; Odoo: hr.employee, payroll tableslast_updated: Varies by source table.notes: Combines headcount, availability, and cost data.
3. Inventory Data
This category includes all data points related to on-hand and in-transit stock.
3.1. Inventory Levels & Composition
The amount and type of stock on hand.
- Data Owner: Inventory Control / Warehouse Management
- Source System Example: SAP IM, Odoo Inventory
- Update Frequency: Real-time or Daily
- Constituent Data:
snapshot_date: (SAP: MARD-ERDAT or custom, Odoo: stock_quant.inventory_date)location_id(warehouse): (SAP: MARD-WERKS, Odoo: stock_location.id)product_sku: (SAP: MARD-MATNR, Odoo: product_product.id)quantity_on_hand: (SAP: MARD-LABST, Odoo: stock_quant.quantity)in_transit_units: Quantity shipped but not yet received.available_units: Total stock available to promise.work_in_progress_units: Value/quantity of partially finished goods.
- Metadata:
source_table: SAP: MARD; Odoo: stock.quantlast_updated: Varies by source table.notes: Represents a snapshot of physical inventory.
3.2. Inventory Policy & Strategy
The rules and targets governing inventory.
- Data Owner: Supply Planning / Inventory Management
- Source System Example: ERP, Advanced Planning System
- Update Frequency: Varies
- Constituent Data:
product_sku: (SAP: MARA-MATNR, Odoo: product_product.id)location_id: (SAP: MARD-WERKS, Odoo: stock_location.id)safety_stock_units: (SAP: MRP2-SOBSL, Odoo: product.safety_stock)safety_stock_days: (SAP: Custom or calculated, Odoo: Custom or calculated)days_of_supply: (SAP: Calculated field, Odoo: Calculated field)stockout_risk_alerts: Proactive warnings of potential shortages. (Calculated)obsolete_quantity: (SAP: Custom field or flag, Odoo: Custom field)obsolete_value: (SAP: Calculated, Odoo: Calculated)decoupling_point_positioning: Strategic locations where inventory is held.multi_echelon_inventory_data: Data for optimizing inventory across the network.
- Metadata:
source_table: Varies (MARC, MARD, custom tables)last_updated: Varies by source.notes: Defines inventory targets and risk levels.
4. Financial Data
This category translates operational data into financial terms.
4.1. Profitability Metrics
Data related to the profitability of the plan.
- Data Owner: Finance / FP&A
- Source System Example: SAP FI/CO, Odoo Accounting
- Update Frequency: Monthly
- Constituent Data:
revenue: Top-line sales revenue. (SAP: VBRP-NETWR, Odoo: account.move.line-price_subtotal)cost_of_goods_sold: Direct costs of production. (SAP: CO-PA or FI data, Odoo: Calculated)gross_margin: Revenue - COGS. (SAP: Calculated, Odoo: Calculated)gross_margin_percentage: Gross Margin / Revenue. (SAP: Calculated, Odoo: Calculated)
- Metadata:
source_table: SAP: VBRP, CO-PA; Odoo: account.move.linelast_updated: Varies by source table.notes: Core metrics for financial performance.
4.2. Balance Sheet & Cash Flow Metrics
Data related to the financial health of the company.
- Data Owner: Finance / Treasury
- Source System Example: SAP FI, Odoo Accounting
- Update Frequency: Monthly / Quarterly
- Constituent Data:
snapshot_date: (SAP: Custom date, Odoo: Custom date)inventory_value: The financial value tied up in inventory. (SAP: MBEW-SALK3, Odoo: stock.valuation.layer-value)inventory_carrying_costs: The cost to hold inventory.working_capital: Current Assets - Current Liabilities. (SAP: FI-GL accounts, Odoo: account.account with tags)cash_flow_impact: The effect of the plan on cash.return_on_net_assets: RONA, a key profitability ratio.
- Metadata:
source_table: SAP: MBEW, FI-GL; Odoo: stock.valuation_layer, account.accountlast_updated: Varies by source table.notes: Key indicators of financial health and liquidity.
4.3. Planning & Decision Metrics
Financial data used to guide decisions.
- Data Owner: Finance / Logistics
- Source System Example: FP&A Tool, ERP, SAP SD, Odoo Delivery/Accounting
- Update Frequency: Monthly / As needed
- Constituent Data:
financial_impact_of_scenarios: Real-time calculation of scenario costs/benefits.budgetary_constraints: Financial limits the plan must adhere to.shipment_id: (SAP: LIKP-VBELN, Odoo: stock_picking.id)standard_freight_cost: (SAP: LIKP-FRKST, Odoo: delivery.carrier.price)expedite_premium_cost: (SAP: Custom field, Odoo: Custom field)
- Metadata:
source_table: Varies (FP&A system, LIKP, etc.)last_updated: Varies by source.notes: Key inputs for financial modeling and decision-making.
5. Performance Metrics (KPIs)
This category includes key indicators that measure the health and effectiveness of the S&OP process and execution.
5.1. Forecast Performance
Metrics measuring the quality of the demand forecast.
- Data Owner: Demand Planning / Analytics
- Source System Example: SAP IBP, Odoo custom
- Update Frequency: Monthly
- Constituent Data:
time_period: (SAP: Custom date, Odoo: Custom date)product_sku: (SAP: MARA-MATNR, Odoo: product_product.id)forecast_value: (SAP: SOPC-FORECAST_QTY, Odoo: product.forecast_units)actual_value: (SAP: Sales actuals, Odoo: Sales actuals)absolute_percentage_error: (SAP: Calculated, Odoo: Calculated)forecast_error_sum: (SAP: Calculated, Odoo: Calculated)bias_metric: (SAP: Calculated, Odoo: Calculated)
- Metadata:
source_table: Calculated from forecast and actuals data.last_updated: Monthly, after cycle closes.notes: Key indicators of forecast quality.
5.2. Customer Service Performance
Metrics measuring the ability to meet customer promises.
- Data Owner: Customer Service / Logistics
- Source System Example: SAP SD, Odoo Delivery
- Update Frequency: Monthly
- Constituent Data:
time_period: (SAP: Custom date, Odoo: Custom date)customer_segment: (SAP: KNA1-KDGRP or custom, Odoo: res_partner.category_id)total_orders: (SAP: Custom count, Odoo: Custom count)otif_orders: (SAP: Custom count, Odoo: Custom count)otif_percentage: (SAP: Calculated, Odoo: Calculated)service_level: e.g., Fill Rate.perfect_order_fulfillment: Percentage of error-free orders.
- Metadata:
source_table: Calculated from sales and delivery data.last_updated: Monthly.notes: Key indicator of customer satisfaction.
5.3. Supply Chain Efficiency
Metrics measuring the efficiency of the supply chain.
- Data Owner: Supply Chain / Finance / Inventory Management
- Source System Example: SAP Analytics, Odoo Reporting
- Update Frequency: Monthly / Quarterly
- Constituent Data:
time_period: (SAP: Custom date field, Odoo: Custom date field)cost_of_goods_sold: (SAP: CO-PA or FI-CO data, Odoo: account_move_line filtered)average_inventory_value: (SAP: Calculated from inventory balances, Odoo: Calculated)inventory_turns_ratio: (SAP: Calculated, Odoo: Calculated)lead_time: Actual vs. planned lead time for fulfillment.asset_management_efficiency: How effectively assets are used.
- Metadata:
source_table: Calculated from financial and inventory data.last_updated: Monthly / Quarterly.notes: Key indicators of operational efficiency.
5.4. Process Performance
Metrics measuring the effectiveness of the S&OP process itself.
- Data Owner: S&OP Facilitator / Analytics
- Source System Example: ChainAlign (Generated), SAP IBP/Analytics, Odoo custom
- Update Frequency: Per cycle / Monthly
- Constituent Data:
plan_adherence_score: A weighted score combiningForecast Accuracy,Service Level, andProduction Attainment. (SAP: Custom calculation, Odoo: Custom calculation)decision_velocity: Time from issue identification to decision.decision_id: (SAP: Custom ID, Odoo: Custom record ID)meeting_date: (SAP: Custom date, Odoo: Custom date)decision_text: (SAP: Custom text field, Odoo: Custom text field)rolling_12_month_view: A forward-looking indicator of business direction.
- Metadata:
source_table: ChainAlign internal tables, custom SAP/Odoo tables.last_updated: Per cycle.notes: Metrics to measure the health of the S&OP process itself.
6. Strategic & Contextual Data
This category provides the high-level business context that guides S&OP decisions.
6.1. Corporate Strategy & Objectives
The "why" behind the S&OP process.
- Data Owner: Strategy / Executive Team
- Source System Example: SAP Strategy Mgmt, Odoo custom
- Update Frequency: Annually / As needed
- Constituent Data:
objective_id: (SAP: Custom ID, Odoo: Custom ID)objective_name: (SAP: Custom text, Odoo: Custom text)target_value: (SAP: Custom numeric, Odoo: Custom numeric)current_value: (SAP: Custom numeric, Odoo: Custom numeric)weighting: (SAP: Custom numeric, Odoo: Custom numeric)corporate_strategy: e.g., Operational Excellence, Product Leadership.service_level_agreements: Documented service targets.
- Metadata:
source_table: SAP: custom table, Odoo: custom fieldlast_updated: SAP: custom timestamp, Odoo: custom fieldnotes: Used for prioritization or scoring.
6.2. Planning & Decision Context
Data that frames the planning process.
- Data Owner: S&OP Facilitator / Planners
- Source System Example: ChainAlign (Generated), SAP IBP, Odoo custom
- Update Frequency: Per cycle / As needed
- Constituent Data:
assumption_id: (SAP: Custom ID, Odoo: Custom ID)plan_version_id: (SAP: SOPC-PLAN_VERSION, Odoo: Custom plan version ID)assumption_text: (SAP: Custom text field, Odoo: Custom text field)author: (SAP: User ID, Odoo: res.users.id)date_created: (SAP: Timestamp, Odoo: Timestamp)scenario_plans: The details of what-if analyses.decision_log: A record of all key decisions made.risk_assessment_matrices: Tools for evaluating potential risks.
- Metadata:
source_table: SAP: any relevant table, Odoo: any relevant tablelast_updated: SAP: date_created field, Odoo: create_datenotes: Indicates when the record was first created.
7. Technology & Data Management
Data related to the ChainAlign system itself.
7.1. System & AI Data
Data generated by or about the ChainAlign platform.
- Data Owner: ChainAlign Admin
- Source System Example: ChainAlign (Internal)
- Update Frequency: Real-time
- Constituent Data:
conversational_intelligence_data: Transcripts, intents, entities.data_health_score: The overall quality score for ingested data.data_freshness_indicators: Timestamps for source and sync.system_performance_data: API latency, uptime, etc.security_data: Audit logs, access records.
This comprehensive inventory will guide the development of ChainAlign's data model, ingestion engine, and AI features, ensuring we can support the full breadth of a mature S&OP process.