AI Processing Pipeline for Market Intelligence
Executive Summary
A comprehensive AI processing system that transforms raw news and economic data into actionable S&OP intelligence through multi-stage analysis, risk assessment, and business impact evaluation.
1. Multi-Stage AI Processing Pipeline
Stage 1: Data Ingestion and Normalization
// Data ingestion service
class DataIngestionService {
constructor() {
this.processors = {
'newsapi': new NewsAPIProcessor(),
'worldbank': new WorldBankProcessor(),
'freightwaves': new FreightWavesProcessor(),
'supplychaindive': new SupplyChainDiveProcessor(),
'trade_data': new TradeDataProcessor()
};
}
async ingestData(sources, timeframe = '24h') {
const rawData = await Promise.all(
sources.map(async (source) => {
const processor = this.processors[source.type];
return await processor.fetch(source.config, timeframe);
})
);
// Normalize data structure
return this.normalizeDataStructure(rawData.flat());
}
normalizeDataStructure(rawItems) {
return rawItems.map(item => ({
id: this.generateUniqueId(item),
source: item.source,
type: item.type || 'news', // news, economic_data, trade_data
title: item.title || item.name,
content: item.description || item.content || item.summary,
published_at: new Date(item.publishedAt || item.date),
url: item.url,
raw_data: item,
// Standardized fields for processing
geographic_mentions: [],
industry_mentions: [],
keywords: [],
numerical_data: this.extractNumericalData(item),
// Processing metadata
processed_at: new Date(),
processing_version: '1.0'
}));
}
}
Stage 2: Content Analysis and Feature Extraction
class ContentAnalysisEngine {
constructor() {
this.nlpProcessor = new NLPProcessor();
this.industryClassifier = new IndustryClassifier();
this.geographicExtractor = new GeographicExtractor();
this.riskPatternMatcher = new RiskPatternMatcher();
}
async analyzeContent(normalizedItems) {
return await Promise.all(
normalizedItems.map(async (item) => {
const analysis = await this.performDeepAnalysis(item);
return {
...item,
analysis: analysis
};
})
);
}
async performDeepAnalysis(item) {
const content = `${item.title} ${item.content}`;
// Parallel analysis tasks
const [
sentimentAnalysis,
entityExtraction,
industryClassification,
geographicAnalysis,
riskIndicators,
temporalAnalysis,
numericalExtraction
] = await Promise.all([
this.analyzeSentiment(content),
this.extractEntities(content),
this.classifyIndustries(content),
this.extractGeographicInfo(content),
this.identifyRiskPatterns(content),
this.analyzeTimelineUrgency(content, item.published_at),
this.extractAndAnalyzeNumbers(content)
]);
return {
sentiment: sentimentAnalysis,
entities: entityExtraction,
industries: industryClassification,
geography: geographicAnalysis,
risk_patterns: riskIndicators,
timeline: temporalAnalysis,
numerical_insights: numericalExtraction,
content_quality_score: this.assessContentQuality(item, content)
};
}
async analyzeSentiment(content) {
// Use a combination of lexicon-based and ML approaches
const lexiconScore = this.calculateLexiconSentiment(content);
const contextualScore = await this.getMLSentiment(content);
// Weighted combination
const finalScore = (lexiconScore * 0.4) + (contextualScore * 0.6);
return {
score: finalScore, // -1 to 1
classification: this.classifySentiment(finalScore),
confidence: this.calculateSentimentConfidence(lexiconScore, contextualScore),
market_sentiment: this.interpretMarketSentiment(finalScore, content)
};
}
async extractEntities(content) {
const entities = {
companies: await this.extractCompanies(content),
products: await this.extractProducts(content),
locations: await this.extractLocations(content),
people: await this.extractPeople(content),
organizations: await this.extractOrganizations(content),
supply_chain_terms: await this.extractSupplyChainTerms(content)
};
return {
...entities,
entity_density: this.calculateEntityDensity(entities, content),
key_relationships: this.identifyEntityRelationships(entities)
};
}
async classifyIndustries(content) {
const industryKeywords = {
'automotive': {
keywords: ['automotive', 'car', 'vehicle', 'tesla', 'ford', 'gm', 'toyota', 'ev', 'electric vehicle'],
weight_multipliers: { 'supply chain': 1.5, 'production': 1.3, 'semiconductor': 2.0 }
},
'agroscience': {
keywords: ['agriculture', 'crop', 'fertilizer', 'seed', 'farming', 'pesticide', 'harvest'],
weight_multipliers: { 'weather': 2.0, 'yield': 1.8, 'commodity': 1.5 }
},
'pharmaceutical': {
keywords: ['pharmaceutical', 'drug', 'medicine', 'fda', 'clinical trial', 'api', 'vaccine'],
weight_multipliers: { 'regulatory': 2.0, 'approval': 1.8, 'shortage': 1.7 }
},
'technology': {
keywords: ['technology', 'software', 'semiconductor', 'chip', 'ai', 'cloud', 'data'],
weight_multipliers: { 'supply chain': 1.5, 'shortage': 2.0 }
},
'energy': {
keywords: ['energy', 'oil', 'gas', 'renewable', 'solar', 'wind', 'coal'],
weight_multipliers: { 'price': 1.8, 'supply': 1.6 }
}
};
const classifications = {};
for (const [industry, config] of Object.entries(industryKeywords)) {
let score = 0;
const contentLower = content.toLowerCase();
// Base keyword matching
config.keywords.forEach(keyword => {
const matches = (contentLower.match(new RegExp(keyword, 'g')) || []).length;
score += matches * 0.1;
});
// Apply weight multipliers for contextual terms
Object.entries(config.weight_multipliers).forEach(([term, multiplier]) => {
if (contentLower.includes(term)) {
score *= multiplier;
}
});
classifications[industry] = {
score: Math.min(1.0, score),
confidence: this.calculateIndustryConfidence(score, content),
supporting_evidence: this.extractSupportingEvidence(content, config.keywords)
};
}
return {
classifications,
primary_industry: this.getPrimaryIndustry(classifications),
industry_diversity_score: this.calculateIndustryDiversity(classifications)
};
}
async identifyRiskPatterns(content) {
const riskPatterns = {
'supply_disruption': {
patterns: [
/supply.*disrupt/gi,
/shortage/gi,
/delay.*deliver/gi,
/production.*halt/gi,
/factory.*shutdown/gi
],
severity_multipliers: {
'critical': 1.0,
'major': 0.8,
'significant': 0.6,
'minor': 0.3
}
},
'labor_issues': {
patterns: [
/strike/gi,
/labor.*dispute/gi,
/worker.*shortage/gi,
/union.*negotiation/gi,
/wage.*increase/gi
],
severity_multipliers: {
'indefinite': 1.0,
'extended': 0.8,
'planned': 0.5
}
},
'regulatory_changes': {
patterns: [
/regulation.*change/gi,
/policy.*update/gi,
/compliance.*requirement/gi,
/tariff/gi,
/trade.*war/gi
],
severity_multipliers: {
'immediate': 1.0,
'pending': 0.6,
'proposed': 0.3
}
},
'natural_disasters': {
patterns: [
/hurricane/gi,
/earthquake/gi,
/flood/gi,
/typhoon/gi,
/wildfire/gi
],
severity_multipliers: {
'category 5': 1.0,
'category 4': 0.8,
'severe': 0.7
}
},
'economic_indicators': {
patterns: [
/inflation.*rise/gi,
/interest.*rate.*increase/gi,
/recession.*risk/gi,
/gdp.*decline/gi,
/unemployment.*rise/gi
],
severity_multipliers: {
'accelerating': 1.0,
'steady': 0.6,
'moderate': 0.4
}
}
};
const detectedRisks = {};
let maxSeverity = 0;
for (const [riskType, config] of Object.entries(riskPatterns)) {
const matches = [];
let baseScore = 0;
config.patterns.forEach(pattern => {
const patternMatches = content.match(pattern) || [];
matches.push(...patternMatches);
baseScore += patternMatches.length * 0.2;
});
if (matches.length > 0) {
// Apply severity multipliers
let severityScore = baseScore;
Object.entries(config.severity_multipliers).forEach(([term, multiplier]) => {
if (content.toLowerCase().includes(term)) {
severityScore *= multiplier;
}
});
const finalScore = Math.min(1.0, severityScore);
maxSeverity = Math.max(maxSeverity, finalScore);
detectedRisks[riskType] = {
score: finalScore,
matches: matches.length,
evidence: matches.slice(0, 3), // Top 3 matches
confidence: this.calculateRiskConfidence(matches, content)
};
}
}
return {
detected_risks: detectedRisks,
overall_severity: maxSeverity,
risk_categories: Object.keys(detectedRisks),
risk_density: Object.keys(detectedRisks).length / Object.keys(riskPatterns).length
};
}
}
Stage 3: Business Impact Assessment
class BusinessImpactAssessor {
constructor() {
this.financialModels = new FinancialImpactModels();
this.supplyChainMapper = new SupplyChainImpactMapper();
this.marketAnalyzer = new MarketImpactAnalyzer();
}
async assessBusinessImpact(analyzedItems) {
return await Promise.all(
analyzedItems.map(async (item) => {
const impact = await this.calculateComprehensiveImpact(item);
return {
...item,
business_impact: impact
};
})
);
}
async calculateComprehensiveImpact(item) {
const [
financialImpact,
supplyChainImpact,
operationalImpact,
marketImpact,
timelineImpact
] = await Promise.all([
this.assessFinancialImpact(item),
this.assessSupplyChainImpact(item),
this.assessOperationalImpact(item),
this.assessMarketImpact(item),
this.assessTimelineImpact(item)
]);
// Calculate weighted overall impact score
const overallImpact = this.calculateWeightedImpact({
financial: financialImpact,
supply_chain: supplyChainImpact,
operational: operationalImpact,
market: marketImpact,
timeline: timelineImpact
});
return {
financial: financialImpact,
supply_chain: supplyChainImpact,
operational: operationalImpact,
market: marketImpact,
timeline: timelineImpact,
overall_score: overallImpact,
impact_category: this.categorizeImpact(overallImpact),
confidence_level: this.calculateImpactConfidence(item)
};
}
async assessFinancialImpact(item) {
const content = item.content.toLowerCase();
const numericalData = item.analysis.numerical_insights;
// Extract financial indicators
const revenueImpact = this.estimateRevenueImpact(content, numericalData);
const costImpact = this.estimateCostImpact(content, numericalData);
const marketCapImpact = this.estimateMarketCapImpact(content, numericalData);
// Risk-based financial modeling
const riskMultiplier = this.calculateRiskMultiplier(item.analysis.risk_patterns);
const industryMultiplier = this.getIndustryMultiplier(item.analysis.industries);
const totalImpact = (revenueImpact + costImpact + marketCapImpact) * riskMultiplier * industryMultiplier;
return {
estimated_total_impact: totalImpact,
revenue_impact: revenueImpact,
cost_impact: costImpact,
market_cap_impact: marketCapImpact,
impact_range: {
min: totalImpact * 0.3,
max: totalImpact * 2.5
},
currency: 'USD',
confidence: this.calculateFinancialConfidence(numericalData, content)
};
}
async assessSupplyChainImpact(item) {
const analysis = item.analysis;
// Supply chain risk factors
const logisticsRisk = this.assessLogisticsRisk(analysis);
const supplierRisk = this.assessSupplierRisk(analysis);
const demandRisk = this.assessDemandRisk(analysis);
const inventoryRisk = this.assessInventoryRisk(analysis);
return {
logistics_risk: logisticsRisk,
supplier_risk: supplierRisk,
demand_risk: demandRisk,
inventory_risk: inventoryRisk,
overall_supply_risk: Math.max(logisticsRisk, supplierRisk, demandRisk, inventoryRisk),
affected_regions: this.identifyAffectedRegions(analysis),
recovery_timeline: this.estimateRecoveryTimeline(analysis),
mitigation_strategies: this.suggestMitigationStrategies(analysis)
};
}
estimateRevenueImpact(content, numericalData) {
let impact = 0;
// Direct revenue mentions
const revenuePatterns = [
/revenue.*down.*(\d+)%/gi,
/sales.*decline.*(\d+)%/gi,
/\$(\d+(?:\.\d+)?).*billion.*loss/gi,
/\$(\d+(?:\.\d+)?).*million.*impact/gi
];
revenuePatterns.forEach(pattern => {
const matches = content.matchAll(pattern);
for (const match of matches) {
const number = parseFloat(match[1]);
if (match[0].includes('billion')) {
impact += number * 1000000000;
} else if (match[0].includes('million')) {
impact += number * 1000000;
} else if (match[0].includes('%')) {
// Percentage impact - estimate based on typical industry revenues
impact += this.estimatePercentageImpact(number);
}
}
});
// Indirect impact from numerical data
if (numericalData.percentages.length > 0) {
const maxPercentage = Math.max(...numericalData.percentages);
if (maxPercentage > 10) {
impact += this.estimateIndirectRevenueImpact(maxPercentage);
}
}
return impact;
}
}
Stage 4: Relevance Scoring and Prioritization
class RelevanceScorer {
constructor() {
this.userProfileService = new UserProfileService();
this.industryContextService = new IndustryContextService();
this.geographicContextService = new GeographicContextService();
}
async scoreRelevance(assessedItems, userContext = null) {
return await Promise.all(
assessedItems.map(async (item) => {
const relevanceScore = await this.calculateRelevanceScore(item, userContext);
return {
...item,
relevance_score: relevanceScore,
priority_rank: 0 // Will be set after sorting
};
})
);
}
async calculateRelevanceScore(item, userContext) {
const factors = {
industry_alignment: await this.scoreIndustryAlignment(item, userContext),
geographic_relevance: await this.scoreGeographicRelevance(item, userContext),
business_impact_magnitude: this.scoreImpactMagnitude(item),
timeline_urgency: this.scoreTimelineUrgency(item),
content_quality: this.scoreContentQuality(item),
source_credibility: this.scoreSourceCredibility(item),
freshness: this.scoreFreshness(item),
user_interaction_history: await this.scoreUserInteractionHistory(item, userContext)
};
// Weighted combination of factors
const weights = {
industry_alignment: 0.25,
geographic_relevance: 0.15,
business_impact_magnitude: 0.20,
timeline_urgency: 0.15,
content_quality: 0.10,
source_credibility: 0.05,
freshness: 0.05,
user_interaction_history: 0.05
};
let relevanceScore = 0;
for (const [factor, score] of Object.entries(factors)) {
relevanceScore += score * weights[factor];
}
return {
overall_score: Math.min(1.0, relevanceScore),
factor_breakdown: factors,
explanation: this.generateRelevanceExplanation(factors, weights)
};
}
scoreImpactMagnitude(item) {
const impact = item.business_impact;
let score = 0;
// Financial impact scoring
if (impact.financial.estimated_total_impact > 1000000000) { // $1B+
score += 0.4;
} else if (impact.financial.estimated_total_impact > 100000000) { // $100M+
score += 0.3;
} else if (impact.financial.estimated_total_impact > 10000000) { // $10M+
score += 0.2;
}
// Supply chain risk scoring
if (impact.supply_chain.overall_supply_risk > 0.8) {
score += 0.3;
} else if (impact.supply_chain.overall_supply_risk > 0.6) {
score += 0.2;
} else if (impact.supply_chain.overall_supply_risk > 0.4) {
score += 0.1;
}
// Risk pattern severity
if (impact.overall_score > 0.8) {
score += 0.3;
} else if (impact.overall_score > 0.6) {
score += 0.2;
}
return Math.min(1.0, score);
}
}
Stage 5: Knowledge Base Integration
class KnowledgeBaseIntegrator {
constructor() {
this.vectorStore = new VectorStore();
this.embeddingService = new EmbeddingService();
this.ragUpdater = new RAGUpdater();
}
async integrateIntoKnowledgeBase(scoredItems) {
// Filter high-value items for knowledge base
const highValueItems = scoredItems.filter(item =>
item.relevance_score.overall_score > 0.6 ||
item.business_impact.overall_score > 0.7
);
const processedItems = await Promise.all(
highValueItems.map(async (item) => {
return await this.processForKnowledgeBase(item);
})
);
// Update RAG system
await this.ragUpdater.updateWithNewIntelligence(processedItems);
return {
processed_count: processedItems.length,
knowledge_updates: processedItems.map(item => ({
id: item.id,
categories: item.kb_categories,
impact_areas: item.kb_impact_areas
}))
};
}
async processForKnowledgeBase(item) {
// Generate embeddings for semantic search
const embeddings = await this.embeddingService.generateEmbeddings([
item.title,
item.content,
item.analysis.entities.supply_chain_terms.join(' ')
]);
// Create knowledge base entry
const kbEntry = {
id: item.id,
title: item.title,
content: item.content,
summary: await this.generateExecutiveSummary(item),
// Structured data for RAG
entities: item.analysis.entities,
industries: item.analysis.industries.primary_industry,
geographic_regions: item.analysis.geography.regions,
risk_factors: Object.keys(item.analysis.risk_patterns.detected_risks),
business_impact_summary: this.summarizeBusinessImpact(item.business_impact),
// Search and retrieval data
embeddings: embeddings,
keywords: this.extractKeywords(item),
categories: this.categorizeForKB(item),
// Metadata
source: item.source,
published_at: item.published_at,
processed_at: new Date(),
relevance_score: item.relevance_score.overall_score,
// S&OP specific tags
s_and_op_tags: this.generateSandOPTags(item)
};
return kbEntry;
}
generateSandOPTags(item) {
const tags = [];
// Supply-side tags
if (item.business_impact.supply_chain.supplier_risk > 0.6) {
tags.push('supplier_risk');
}
if (item.business_impact.supply_chain.logistics_risk > 0.6) {
tags.push('logistics_risk');
}
// Demand-side tags
if (item.business_impact.supply_chain.demand_risk > 0.6) {
tags.push('demand_risk');
}
// Cost tags
if (item.business_impact.financial.cost_impact > 10000000) {
tags.push('significant_cost_impact');
}
// Timeline tags
if (item.business_impact.timeline.urgency_score > 0.8) {
tags.push('immediate_action_required');
}
// Industry-specific tags
const primaryIndustry = item.analysis.industries.primary_industry;
if (primaryIndustry) {
tags.push(`${primaryIndustry}_industry`);
}
return tags;
}
}
2. Integration with ChainAlign's RAG System
RAG Enhancement Service
class RAGEnhancementService {
constructor() {
this.knowledgeGraph = new KnowledgeGraphService();
this.contextualRetrieval = new ContextualRetrievalService();
}
async enhanceRAGWithMarketIntelligence(kbEntries) {
// Update knowledge graph with new relationships
await this.updateKnowledgeGraph(kbEntries);
// Create contextual retrieval patterns
await this.createRetrievalPatterns(kbEntries);
// Generate proactive insights
const proactiveInsights = await this.generateProactiveInsights(kbEntries);
return {
knowledge_graph_updates: this.knowledgeGraph.getUpdateSummary(),
new_retrieval_patterns: proactiveInsights.length,
proactive_insights: proactiveInsights
};
}
async updateKnowledgeGraph(kbEntries) {
for (const entry of kbEntries) {
// Create entity relationships
const relationships = this.extractRelationships(entry);
await this.knowledgeGraph.addRelationships(relationships);
// Update industry-specific knowledge
await this.knowledgeGraph.updateIndustryKnowledge(
entry.industries,
entry.business_impact_summary
);
// Update geographic knowledge
await this.knowledgeGraph.updateGeographicKnowledge(
entry.geographic_regions,
entry.risk_factors
);
}
}
}
This AI processing pipeline provides ChainAlign with intelligent market intelligence that directly feeds into S&OP decision-making, automatically scoring relevance, assessing business impact, and integrating with your RAG system for contextual insights.